A better measure of relative prediction accuracy for model selection and model estimation

A better measure of relative prediction accuracy for model selection and model estimation

0.00 Avg rating0 Votes
Article ID: iaor201526794
Volume: 66
Issue: 8
Start Page Number: 1352
End Page Number: 1362
Publication Date: Aug 2015
Journal: Journal of the Operational Research Society
Authors:
Keywords: simulation: analysis, forecasting: applications
Abstract:

Surveys show that the mean absolute percentage error (MAPE) is the most widely used measure of prediction accuracy in businesses and organizations. It is, however, biased: when used to select among competing prediction methods it systematically selects those whose predictions are too low. This has not been widely discussed and so is not generally known among practitioners. We explain why this happens. We investigate an alternative relative accuracy measure which avoids this bias: the log of the accuracy ratio, that is, log (prediction/actual). Relative accuracy is particularly relevant if the scatter in the data grows as the value of the variable grows (heteroscedasticity). We demonstrate using simulations that for heteroscedastic data (modelled by a multiplicative error factor) the proposed metric is far superior to MAPE for model selection. Another use for accuracy measures is in fitting parameters to prediction models. Minimum MAPE models do not predict a simple statistic and so theoretical analysis is limited. We prove that when the proposed metric is used instead, the resulting least squares regression model predicts the geometric mean. This important property allows its theoretical properties to be understood.

Reviews

Required fields are marked *. Your email address will not be published.